2005 ERRATA

to the

2001 Edition of

the Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed version dated 06-02 20M)

Page 93

In Figure 10.28, the equation for \(R_2\) should be revised as follows:

\[
R_2 = V_2 + V_3 \quad \ldots \ldots = \frac{Pa}{2\ell^3} \left(2\ell^2 + b(\ell + a)\right)
\]

Change the “minus” sign to a “plus” sign in front of the variable “b.”

2005 ERRATA

to the

2001 Edition of

NATIONAL DESIGN SPECIFICATION® (NDS®) FOR WOOD CONSTRUCTION

included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed versions dated 03-02 2M, 06-02 20M, 8-04 1M)

Page 112

In section 12.3.6.1, subsections (b), (c), (d), and (e), revise each sentence to read:

“Sloping surface with a \(\alpha\) from 45° …”

Remainder of each sentence remains the same.
2005 ERRATA
to the
2001 Edition of
the Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed version dated 06-02 20M)

Page Revision
32 In Example 3-2, the text should be revised as follows:

 “Same as Example 3-1, but the chord includes connections with one row of 3/4 7/8 inch bolts (in a 1/16 inch oversized hole)…”

All other text unchanged.
2004 ERRATA

to the

2001 Edition of

NATIONAL DESIGN SPECIFICATION® (NDS®) FOR WOOD CONSTRUCTION

included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction

(printed versions dated 03-02 2M, 06-02 20M, 8-04 1M)

Page 59

In Table 10.3.3 Wet Service Factors, C_M, for Connections, change the following:

<table>
<thead>
<tr>
<th>Fastener Type</th>
<th>Moisture Content</th>
<th>C_M</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>At Time of Fabrication</td>
<td>In-Service</td>
</tr>
<tr>
<td>Lateral Loads</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metal Connector Plates(^2)</td>
<td>any</td>
<td>> 19%</td>
</tr>
</tbody>
</table>

Page 108

In Table 12.2.3 Penetration Depth Factors, C_d, for Split Ring and Shear Plate Connectors Used with Lag Screws, change “Species Group (see Table 10A)” to “Species Group (see Table 12A)”

Page 149

In Section D.3, equation D-3 change “F_{cE}” to “F_{bE}”.
May 2004

2004 ADDENDUM
to the

2001 Edition of

SUPPLEMENT TO THE NDS® - DESIGN VALUES FOR WOOD CONSTRUCTION
included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed version dated 06-02 20M)

Page 4 Revision 4

In Table 2.1, add the following:

<table>
<thead>
<tr>
<th>Species or Species Combination</th>
<th>Species That May Be Included in Combination</th>
<th>Grading Rules Agencies</th>
<th>Design Values Provided in Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Cedar</td>
<td>Alaska Cedar</td>
<td>WCLIB</td>
<td>4A</td>
</tr>
<tr>
<td>Alaska Hemlock</td>
<td>Alaska Hemlock</td>
<td>WWPA</td>
<td>4A</td>
</tr>
<tr>
<td>Alaska Yellow Cedar</td>
<td>Alaska Yellow Cedar</td>
<td>WCLIB, WWPA</td>
<td>4A</td>
</tr>
</tbody>
</table>

31 In Table 4A, add the following species and design values:

<table>
<thead>
<tr>
<th>Species and commercial grade</th>
<th>Size classification</th>
<th>Bending (F_b)</th>
<th>Tension parallel to grain (F_t)</th>
<th>Shear parallel to grain (F_v)</th>
<th>Compression perpendicular to grain (F_{cl})</th>
<th>Compression parallel to grain (F_c)</th>
<th>Modulus of Elasticity (E)</th>
<th>Grading Rules Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alaska Cedar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Structural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 1</td>
<td></td>
<td>1,150</td>
<td>625</td>
<td>165</td>
<td>525</td>
<td>1,000</td>
<td>1,400,000</td>
<td>WCLIB</td>
</tr>
<tr>
<td>No. 2</td>
<td>2” & wider</td>
<td>975</td>
<td>525</td>
<td>165</td>
<td>525</td>
<td>900</td>
<td>1,300,000</td>
<td></td>
</tr>
<tr>
<td>No. 3</td>
<td>2” & wider</td>
<td>800</td>
<td>425</td>
<td>165</td>
<td>525</td>
<td>750</td>
<td>1,200,000</td>
<td></td>
</tr>
<tr>
<td>Stud</td>
<td>2” & wider</td>
<td>450</td>
<td>250</td>
<td>165</td>
<td>525</td>
<td>425</td>
<td>1,100,000</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td>625</td>
<td>350</td>
<td>165</td>
<td>525</td>
<td>475</td>
<td>1,100,000</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>2”-4” wide</td>
<td>900</td>
<td>500</td>
<td>165</td>
<td>525</td>
<td>950</td>
<td>1,200,000</td>
<td></td>
</tr>
<tr>
<td>Utility</td>
<td></td>
<td>500</td>
<td>275</td>
<td>165</td>
<td>525</td>
<td>775</td>
<td>1,100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>125</td>
<td>165</td>
<td>525</td>
<td>500</td>
<td>1,000,000</td>
<td></td>
</tr>
<tr>
<td>Alaska Hemlock</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Structural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 1</td>
<td></td>
<td>1300</td>
<td>825</td>
<td>185</td>
<td>440</td>
<td>1200</td>
<td>1,700,000</td>
<td>WWPA</td>
</tr>
<tr>
<td>No. 2</td>
<td>2” & wider</td>
<td>900</td>
<td>550</td>
<td>185</td>
<td>440</td>
<td>1100</td>
<td>1,600,000</td>
<td></td>
</tr>
<tr>
<td>No. 3</td>
<td>2” & wider</td>
<td>825</td>
<td>475</td>
<td>185</td>
<td>440</td>
<td>1050</td>
<td>1,500,000</td>
<td></td>
</tr>
<tr>
<td>Stud</td>
<td>2” & wider</td>
<td>475</td>
<td>275</td>
<td>185</td>
<td>440</td>
<td>600</td>
<td>1,400,000</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td>650</td>
<td>375</td>
<td>185</td>
<td>440</td>
<td>650</td>
<td>1,400,000</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>2”-4” wide</td>
<td>950</td>
<td>550</td>
<td>185</td>
<td>440</td>
<td>1250</td>
<td>1,400,000</td>
<td></td>
</tr>
<tr>
<td>Utility</td>
<td></td>
<td>525</td>
<td>300</td>
<td>185</td>
<td>440</td>
<td>1050</td>
<td>1,300,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>150</td>
<td>185</td>
<td>440</td>
<td>700</td>
<td>1,200,000</td>
<td></td>
</tr>
<tr>
<td>Alaska Yellow Cedar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Structural</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. 1</td>
<td></td>
<td>1350</td>
<td>800</td>
<td>225</td>
<td>510</td>
<td>1200</td>
<td>1,500,000</td>
<td>WWPA</td>
</tr>
<tr>
<td>No. 2</td>
<td>2” & wider</td>
<td>900</td>
<td>525</td>
<td>225</td>
<td>510</td>
<td>1050</td>
<td>1,400,000</td>
<td></td>
</tr>
<tr>
<td>No. 3</td>
<td>2” & wider</td>
<td>800</td>
<td>450</td>
<td>225</td>
<td>510</td>
<td>1000</td>
<td>1,300,000</td>
<td></td>
</tr>
<tr>
<td>Stud</td>
<td>2” & wider</td>
<td>475</td>
<td>250</td>
<td>225</td>
<td>510</td>
<td>575</td>
<td>1,200,000</td>
<td></td>
</tr>
<tr>
<td>Construction</td>
<td></td>
<td>625</td>
<td>350</td>
<td>225</td>
<td>510</td>
<td>625</td>
<td>1,200,000</td>
<td></td>
</tr>
<tr>
<td>Standard</td>
<td>2”-4” wide</td>
<td>925</td>
<td>500</td>
<td>225</td>
<td>510</td>
<td>1250</td>
<td>1,300,000</td>
<td></td>
</tr>
<tr>
<td>Utility</td>
<td></td>
<td>500</td>
<td>275</td>
<td>225</td>
<td>510</td>
<td>1050</td>
<td>1,100,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>250</td>
<td>125</td>
<td>225</td>
<td>510</td>
<td>675</td>
<td>1,100,000</td>
<td></td>
</tr>
</tbody>
</table>
In footnote 2, add values for Douglas Fir-Larch (N) as follows:

<table>
<thead>
<tr>
<th>Species</th>
<th>Modulus of Elasticity E (x10^6) (psi)</th>
<th>Specific Gravity G</th>
<th>Shear Parallel to Grain Fv (psi)</th>
<th>Compression Perpendicular to Grain FcL (psi)</th>
<th>Grading Rules Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas Fir-Larch (N)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>NLGA</td>
</tr>
<tr>
<td>1.0 and higher</td>
<td>1.2 – 1.9</td>
<td>0.49</td>
<td>180</td>
<td>625</td>
<td></td>
</tr>
<tr>
<td>2.0 – 2.2</td>
<td>0.53</td>
<td>180</td>
<td>715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.3 and higher</td>
<td>0.57</td>
<td>190</td>
<td>715</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In Table 4D, add the following species and design values:

<table>
<thead>
<tr>
<th>Species and commercial grade</th>
<th>Size classification</th>
<th>Design values in pounds per square inch (psi)</th>
<th>Grading Rules Agency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bending Fb, Tension parallel to grain Ft, Shear parallel to grain Fv, Compression perpendicular to grain FcL, Compression parallel to grain Fc, Modulus of Elasticity E</td>
<td></td>
</tr>
<tr>
<td>Alaska Cedar</td>
<td></td>
<td></td>
<td>WCLIB</td>
</tr>
<tr>
<td>Select Structural No. 1</td>
<td>Beams and Stringers</td>
<td>1,400, 675, 155, 525, 925, 1,200,000</td>
<td></td>
</tr>
<tr>
<td>No. 2</td>
<td></td>
<td>1,150, 475, 155, 525, 775, 1,200,000</td>
<td></td>
</tr>
<tr>
<td>Select Structural No. 1</td>
<td>Posts and Timbers</td>
<td>1,300, 700, 155, 525, 975, 1,200,000</td>
<td></td>
</tr>
<tr>
<td>No. 2</td>
<td></td>
<td>1,050, 575, 155, 525, 850, 1,200,000</td>
<td></td>
</tr>
<tr>
<td>No. 2</td>
<td></td>
<td>625, 350, 155, 525, 600, 1,000,000</td>
<td></td>
</tr>
</tbody>
</table>
2003 ERRATA to the ASD STRUCTURAL LUMBER SUPPLEMENT

included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction (printed version dated 06-02 20M)

<table>
<thead>
<tr>
<th>Page</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-55</td>
<td>In Table 7.10, replace Southern Pine Grade #2 and #3 Maximum Floor Joist Spans with:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species and Grade</th>
<th>(ft.-in.)</th>
<th>(ft.-in.)</th>
<th>(ft.-in.)</th>
<th>(ft.-in.)</th>
<th>(ft.-in.)</th>
<th>(ft.-in.)</th>
<th>(ft.-in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>10-9</td>
<td>14-2</td>
<td>18-0</td>
<td>21-9</td>
<td>10-9</td>
<td>14-2</td>
<td>17-9</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>10-7 9-4</td>
<td>12-11</td>
<td>14-0</td>
<td>16-8</td>
<td>9-8 6-6</td>
<td>11-10</td>
<td>14-10</td>
</tr>
<tr>
<td>16 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>9-9</td>
<td>12-10</td>
<td>14-16.5</td>
<td>16-1</td>
<td>9-9 6-6</td>
<td>12-10 12-4</td>
<td>15-4 14-8</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>8-8 5-7.4</td>
<td>10-10.5</td>
<td>12-12.5</td>
<td>14-6</td>
<td>8-8 5-7.4</td>
<td>10-10.5</td>
<td>14-11.1</td>
</tr>
<tr>
<td>19.2 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>8-5 7-4</td>
<td>10-9 9-5</td>
<td>11-11.1</td>
<td>13-2</td>
<td>7-8 6-9</td>
<td>9-5 8-7</td>
<td>10-10.1</td>
</tr>
<tr>
<td>24 in.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Southern Pine #2</td>
<td>8-6</td>
<td>11-11.9</td>
<td>13-13.9</td>
<td>15-5</td>
<td>8-7 7-9</td>
<td>11-9 10-1</td>
<td>12-12-0</td>
</tr>
<tr>
<td>Southern Pine #3</td>
<td>7-6 6-7</td>
<td>10-8 9-11</td>
<td>11-10</td>
<td>11-10</td>
<td>6-10 6-0</td>
<td>8-7 8-7</td>
<td>6-9 1-1</td>
</tr>
</tbody>
</table>

Alternatively, cut and paste the following onto page L-55 of the ASD Lumber Supplement to replace Table 7.10. If you would like to receive a self-adhesive version of the following page that can be permanently inserted in your document, please contact AWC with your mailing address.
<table>
<thead>
<tr>
<th>Joist Spacing</th>
<th>Specie and Grade</th>
<th>Dead Load = 10 psf</th>
<th>Dead Load = 20 psf</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(ft.-in.)</td>
<td>(ft.-in.)</td>
<td>(ft.-in.)</td>
</tr>
<tr>
<td></td>
<td>2x6</td>
<td>2x8</td>
<td>2x10</td>
</tr>
<tr>
<td>12 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19.2 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>24 in.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check sources for availability of lumber in lengths greater than 20 feet.

Table 7.10 Floor Joist Spans for Common Lumber Species
(Residential Areas, Live Load = 40 psf, L/A = 360)
2003 ERRATA

to the

NATIONAL DESIGN SPECIFICATION® (NDS®)
FOR WOOD CONSTRUCTION, ANSI/AF&PA NDS-2001
included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed version dated 06-02 20M)

Page Revision
27 Replace Table 4.3.8 with the following:

<table>
<thead>
<tr>
<th>Table 4.3.8 Incising Factors, Ci</th>
</tr>
</thead>
<tbody>
<tr>
<td>Design Value</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>Fb, Ft, Fc, Fv</td>
</tr>
<tr>
<td>Ez, Fz</td>
</tr>
</tbody>
</table>

{Note: Move Fv to the second row}

33 In section 5.2.2, change Fv to F'v in both equations as follows:

\[F'_{rt} = (1/3)F'_{v} \]

for Southern Pine

\[F'_{rt} = (1/3)F'_{v} \]

for Douglas Fir-Larch, Douglas…

97 In Footnote 4 of Table 11N, replace “lenth” with “length.”

107 In Table 12.2B, first column, shear plate diameter 2-5-8 should be 2-5/8.

117 In Table 13.2.3, metal side plate thickness range for Cst = 0.9 should be:

\[3/16" \leq t_s \leq 1/4" \]

{Note: Add \(\leq \) in front of \(t_s \); change \(\leq \) to \(< \) in front of \(1/4" \)}

2003 ERRATA

to the

ASD WOOD I-JOIST GUIDELINE

 included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed version dated 06-02 20M)

Page Revision
IJ-29 In Table 6.1, for Detail WIJ-1.5, Min. flange area: 2.25 sq. in.

{Note: replaces 5.25 sq. in.}
2003 ERRATA

to the

ASD WOOD STRUCTURAL PANELS SUPPLEMENT

included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction

(printed version dated 06-02 20M)

<table>
<thead>
<tr>
<th>Page</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP-22</td>
<td>Replace Table 4.5 with the following:</td>
</tr>
</tbody>
</table>

Table 4.5 Panel Size Factor, C_s

<table>
<thead>
<tr>
<th>Panel Width, w</th>
<th>C_s</th>
</tr>
</thead>
<tbody>
<tr>
<td>w ≤ 8 inches</td>
<td>0.5</td>
</tr>
<tr>
<td>8 inches < w < 24 inches</td>
<td>(8+w) 32</td>
</tr>
<tr>
<td>w ≥ 24 inches</td>
<td>1.0</td>
</tr>
</tbody>
</table>

2003 ERRATA

to the

ASD STRUCTURAL COMPOSITE LUMBER GUIDELINE

included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction

(printed version dated 06-02 20M)

<table>
<thead>
<tr>
<th>Page</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>SCL-9</td>
<td>In Section 4.2.5, revise the following:</td>
</tr>
</tbody>
</table>

\[F'_{ct} = F_{ct} C_m C_i C_{pi} C_b \]
{Note: Add C_b factor}

\[C_b = \text{per Section 8.3.10 of NDS} \]

2003 ERRATA/ADDENDUM

to the

2001 Edition of

SUPPLEMENT TO THE NDS - DESIGN VALUES FOR WOOD CONSTRUCTION

included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction

(printed version dated 06-02 20M)

<table>
<thead>
<tr>
<th>Page</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>In Table 2.1, add the following:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Species or Species Combination</th>
<th>Species That May Be Included in Combination</th>
<th>Grading Rules Agencies</th>
<th>Design Values Provided in Tables</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldcypress</td>
<td>Baldcypress</td>
<td>SPIB</td>
<td>4A, 4D</td>
</tr>
</tbody>
</table>

12 In Section 3.1.3 under the density formula, replace “Table 8A” with “Table 11.3.2A.”
NDS Supplement changes continued.

Page 22

In Table 1D, replace 3-1/8 in. width values with the following:

<table>
<thead>
<tr>
<th>Depth (d in.)</th>
<th>Area A (in.²)</th>
<th>X-X Axis</th>
<th>Y-Y Axis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Iₓ (in.⁴)</td>
<td>Sₓ (in.³)</td>
</tr>
<tr>
<td>3-1/8 in. Width (rₓ = 0.902 in.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 1/2</td>
<td>17.19</td>
<td>17.19</td>
<td>17.19</td>
</tr>
<tr>
<td>8 1/4</td>
<td>25.78</td>
<td>25.78</td>
<td>25.78</td>
</tr>
<tr>
<td>9 5/8</td>
<td>30.08</td>
<td>30.08</td>
<td>30.08</td>
</tr>
<tr>
<td>11</td>
<td>34.38</td>
<td>34.38</td>
<td>34.38</td>
</tr>
<tr>
<td>12 3/8</td>
<td>38.67</td>
<td>38.67</td>
<td>38.67</td>
</tr>
<tr>
<td>13 3/4</td>
<td>42.97</td>
<td>42.97</td>
<td>42.97</td>
</tr>
<tr>
<td>15 1/8</td>
<td>47.27</td>
<td>47.27</td>
<td>47.27</td>
</tr>
<tr>
<td>16 1/2</td>
<td>51.56</td>
<td>51.56</td>
<td>51.56</td>
</tr>
<tr>
<td>17 7/8</td>
<td>55.86</td>
<td>55.86</td>
<td>55.86</td>
</tr>
<tr>
<td>19 1/4</td>
<td>60.16</td>
<td>60.16</td>
<td>60.16</td>
</tr>
<tr>
<td>20 5/8</td>
<td>64.45</td>
<td>64.45</td>
<td>64.45</td>
</tr>
<tr>
<td>22</td>
<td>68.75</td>
<td>68.75</td>
<td>68.75</td>
</tr>
<tr>
<td>23 3/8</td>
<td>73.05</td>
<td>73.05</td>
<td>73.05</td>
</tr>
</tbody>
</table>

31 In Table 4A, add the following design values for Baldcypress

<table>
<thead>
<tr>
<th>Species and commercial grade</th>
<th>Size classification</th>
<th>Design values in pounds per square inch (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bending Fb</td>
</tr>
<tr>
<td>Baldcypress</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Select Structural No. 1</td>
<td>2" & wider</td>
<td>1200</td>
</tr>
<tr>
<td>No. 2</td>
<td>2" & wider</td>
<td>825</td>
</tr>
<tr>
<td>No. 3</td>
<td>2" & wider</td>
<td>475</td>
</tr>
<tr>
<td>Stud</td>
<td>2" & wider</td>
<td>650</td>
</tr>
<tr>
<td>Construction</td>
<td>2"-4" wide</td>
<td>925</td>
</tr>
<tr>
<td>Standard</td>
<td>2"-4" wide</td>
<td>525</td>
</tr>
<tr>
<td>Utility</td>
<td>2"-4" wide</td>
<td>250</td>
</tr>
</tbody>
</table>

44 In Table 4D, add the following design values for Baldcypress

<table>
<thead>
<tr>
<th>Species and commercial grade</th>
<th>Size classification</th>
<th>Design values in pounds per square inch (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baldcypress</td>
<td></td>
<td>Bending Fb</td>
</tr>
<tr>
<td>Select Structural No. 1</td>
<td>5"x5" & larger</td>
<td>1150</td>
</tr>
<tr>
<td>No. 2</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>625</td>
</tr>
</tbody>
</table>
November 2002

2002 ERRATA

to the

NATIONAL DESIGN SPECIFICATION® (NDS®)
FOR WOOD CONSTRUCTION, ANSI/AF&PA NDS-2001
included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed version dated 06-02 20M)

121 Replace Table 13.2.1C with the table on the following page:
Table 13.2.1C Nominal Wood Capacity Parallel to Grain, P_w, for Timber Rivets

<table>
<thead>
<tr>
<th>Rivets per row</th>
<th>Pw (lbs.)</th>
<th>No. of rows per side</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2340</td>
<td>5610</td>
</tr>
<tr>
<td>4</td>
<td>3440</td>
<td>7390</td>
</tr>
<tr>
<td>6</td>
<td>4620</td>
<td>9160</td>
</tr>
<tr>
<td>8</td>
<td>5850</td>
<td>10840</td>
</tr>
<tr>
<td>10</td>
<td>6750</td>
<td>12500</td>
</tr>
<tr>
<td>12</td>
<td>7630</td>
<td>13830</td>
</tr>
<tr>
<td>14</td>
<td>8360</td>
<td>15480</td>
</tr>
<tr>
<td>16</td>
<td>8770</td>
<td>17110</td>
</tr>
<tr>
<td>18</td>
<td>9750</td>
<td>18580</td>
</tr>
<tr>
<td>20</td>
<td>10320</td>
<td>20320</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Member Thickness (inches)</th>
<th>5</th>
<th>6.75</th>
<th>8.5</th>
<th>10.5</th>
<th>12.5 and greater</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2710</td>
<td>3070</td>
<td>4510</td>
<td>3400</td>
<td>5000</td>
</tr>
<tr>
<td>4</td>
<td>3980</td>
<td>6060</td>
<td>12000</td>
<td>5000</td>
<td>9490</td>
</tr>
<tr>
<td>6</td>
<td>5350</td>
<td>6770</td>
<td>12550</td>
<td>6770</td>
<td>14810</td>
</tr>
<tr>
<td>8</td>
<td>7810</td>
<td>9670</td>
<td>17920</td>
<td>17920</td>
<td>19360</td>
</tr>
<tr>
<td>10</td>
<td>8830</td>
<td>10960</td>
<td>19790</td>
<td>19790</td>
<td>21030</td>
</tr>
<tr>
<td>12</td>
<td>9670</td>
<td>11510</td>
<td>21510</td>
<td>21510</td>
<td>23450</td>
</tr>
<tr>
<td>14</td>
<td>10160</td>
<td>11290</td>
<td>23530</td>
<td>23530</td>
<td>25950</td>
</tr>
<tr>
<td>16</td>
<td>11950</td>
<td>13340</td>
<td>26510</td>
<td>26510</td>
<td>29540</td>
</tr>
<tr>
<td>18</td>
<td>12790</td>
<td>13540</td>
<td>29310</td>
<td>29310</td>
<td>33550</td>
</tr>
<tr>
<td>20</td>
<td>14990</td>
<td>15630</td>
<td>32580</td>
<td>32580</td>
<td>36480</td>
</tr>
</tbody>
</table>

Note: Member dimension is identified as "b" in Figure 13A for connections with steel side plates on opposite sides. For connections having only one plate, member dimension is twice the thickness of the wood member. Linear interpolation for intermediate values shall be permitted.
2002 ERRATA

to the
2001 Edition of

ASD/LRFD Supplement on
Special Design Provisions for Wind and Seismic
(printed version dated 06-02 20M)

<table>
<thead>
<tr>
<th>Page</th>
<th>Revision</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>In Table 4.2A revise column headers A & B as follows:</td>
</tr>
</tbody>
</table>

Replace “Boundary Nail Spacing (inches)” with “Nail Spacing (in.) at diaphragm boundaries (all cases), at continuous panel edges parallel to load (Cases 3 & 4), and at all panel edges (Cases 5 & 6)”

Change boundary nail spacing of 3 inches to 2-1/2 inches

“Panel Edge Nail Spacing (inches)” with “Nail Spacing (in.) at other panel edges (Cases 1, 2, 3 & 4)”
2002 ERRATA

to the
2001 Edition of

ASD Supplement on Wood Structural Panels

(printed version dated 06-02 20M)

Page	**Revision**	**Description**
SP-12	In Table 3.1 change all column headings as follows:	“Strength Axisa Perpendicular to Supports” should be “Stress Applied Parallel to Strength Axisa”
	“Strength Axisa Parallel to Supports” should be “Stress Applied Perpendicular to Strength Axisa”	
SP-13	In Table 3.1.1 change all column headings as follows:	“Strength Axisa” to “Stress Applied”
	“Perpendicular to Supports” should be “Parallel to Strength Axisa”	
	“Parallel to Supports” should be “Perpendicular to Strength Axisa”	
SP-14	In Table 3.2 change all column headings as follows:	“Strength Axisa Perpendicular to Supports” should be “Stress Applied Parallel to Strength Axisa”
	“Strength Axisa Parallel to Supports” should be “Stress Applied Perpendicular to Strength Axisa”	
SP-15	In Table 3.2.1 change all column headings as follows:	“Strength Axisa” to “Stress Applied”
	“Along the Loading Direction” should be “Parallel to Strength Axisa”	
	“Across the Loading Direction” should be “Perpendicular to Strength Axisa”	
SP-16	In Table 3.3 change all column headings as follows:	“Strength Axisb Perpendicular to Supports” should be “Stress Applied Parallel to Strength Axisb”
	“Strength Axisb Parallel to Supports” should be “Stress Applied Perpendicular to Strength Axisb”	
SP-16	In Table 3.3.1 change all column headings as follows:	“Strength Axisb” to “Stress Applied”
	“Perpendicular to Supports” should be “Parallel to Strength Axisb”	
	“Parallel to Supports” should be “Perpendicular to Strength Axisb”	
SP-17	In Table 3.4 change all column headings as follows:	“Strength Axisb Perpendicular to Supports” should be “Stress Applied Parallel to Strength Axisb”
	“Strength Axisb Parallel to Supports” should be “Stress Applied Perpendicular to Strength Axisb”	
SP-18	In Table 3.4.1 change all column headings as follows:	“Strength Axisb” to “Stress Applied”
	“Perpendicular to Supports” should be “Parallel to Strength Axisb”	
	“Parallel to Supports” should be “Perpendicular to Strength Axisb”	
2002 ERRATA
to the

NATIONAL DESIGN SPECIFICATION® (NDS®)
FOR WOOD CONSTRUCTION, ANSI/AF&PA NDS-2001
included in the Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed version dated 06-02 20M)

Page Revision
16 Equation 3.4-5 should be:

\[V'_f = \frac{2}{3} F_v' b \left[d - \left(\frac{d - d_n}{d_n} \right) e \right] \]

(Note: Breadth, b, added to equation)

17 Equation 3.4-6 should be:

\[V'_f = \left[\frac{2}{3} F_v' b d_e \right] \left(\frac{d_e}{d} \right)^2 \]

(Note: \(d_e \) replaces \(d_n \))

18 Section 3.5.1, last sentence: change the word “be” to “been.”

19 Section 3.7.1.3: change \(R_s/d \) to \(f_v/d \).

28 Section 4.4.1.2 (a) – (e) should be:

(a) \(d/b \leq 2 \) (remainder unchanged)
(b) \(2 < d/b \leq 4 \) (remainder unchanged)
(c) \(4 < d/b \leq 5 \) (remainder unchanged)
(d) \(5 < d/b \leq 6 \) (remainder unchanged)
(e) \(6 < d/b \leq 7 \) (remainder unchanged)

(Note: < changed to \(\leq \))

73 Table 11.3.2 Footnote 2: change \(F_{e1} = 6100G^{1.45} (D)^{1/5} \) to \(F_{e1} = 6100G^{1.45} / (D)^{1/5} \) (remainder unchanged)

74 Table 11.3.2A add Yellow Poplar with Specific Gravity = 0.43
2002 ERRATA
to the
2001 Edition of

ASD Guidelines to the
Allowable Stress Design (ASD) Manual for Engineered Wood Construction
(printed version dated 06-02 20M)

Page	**Revision**
IJ-32 | Figure 14 (WIJ-1.3) change IIC rating for Carpet & Pad, without Gypsum Concrete from “62” to “66.”

IJ-33 | Figure 15 (WIJ-1.4) change Report No: UL R14373 should be R10371-1.

2002 ERRATA
to the
2001 Edition of

ASD/LRFD Supplement on
Special Design Provisions for Wind and Seismic
(printed version dated 06-02 20M)

Page	**Revision**
9 | In Table 3.2A change the Nominal Uniform Loads for sheathing with long dimension parallel to supports with an actual stud spacing of 24” o.c. as follows:

<table>
<thead>
<tr>
<th>Span Rating</th>
<th>Nominal Uniform Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>24/16</td>
<td>Delete 35(^2) and Replace with 25(^2)</td>
</tr>
<tr>
<td>32/16</td>
<td>Delete 45(^2) and Replace with 40(^2)</td>
</tr>
<tr>
<td>40/20</td>
<td>Delete 75(^2) and Replace with 65(^2)</td>
</tr>
<tr>
<td>48/24</td>
<td>Delete 115(^2) and Replace with 90(^2)</td>
</tr>
</tbody>
</table>
2002 ERRATA

to the

NATIONAL DESIGN SPECIFICATION® (NDS®)

FOR WOOD CONSTRUCTION, ANSI/AF&PA NDS-2001

(printed version dated 03-02 2M)

Page Revision

28 Section 4.4.1.2 (a) – (e) should be:
 (a) \(d/b \leq 2\) (remainder unchanged)
 (b) \(2 < d/b \leq 4\) (remainder unchanged)
 (c) \(4 < d/b \leq 5\) (remainder unchanged)
 (d) \(5 < d/b \leq 6\) (remainder unchanged)
 (e) \(6 < d/b \leq 7\) (remainder unchanged)

(Note: < changed to \(\leq\))

73 Table 11.3.2 Footnote 2: change \(F_{e\perp} = 6100G^{1.45}(D)^{1/2}\) to \(F_{e\perp} = 6100G^{1.45}/(D)^{1/2}\) (remainder unchanged)

74 Table 11.3.2A add Yellow Poplar with Specific Gravity = 0.43
2002 ERRATA
to the
2001 Edition of

NATIONAL DESIGN SPECIFICATION® (NDS®)
FOR WOOD CONSTRUCTION, ANSI/AF&PA NDS-2001
(for initial printed version dated 03-02 2M)

Page Revision
16 Equation 3.4-5 should be:

\[V_r' = \frac{2}{3} F_v b \left[d - \left(\frac{d - d_n}{d_n} \right) e \right] \]

(Note: Breadth, b, added to equation)

17 Equation 3.4-6 should be:

\[V_r' = \left[\frac{2}{3} F_v b d_e \right] \left(\frac{d_e}{d} \right)^2 \]

(Note: \(d_e\) replaces \(d_n\))

35 Revise section 5.4.1 as follows:

Curved bending members having a varying rectangular cross section (see Figure 5A) and taper cut glued laminated bending members shall be designed in accordance with Reference 48 52.

72 Add footnote 1 to \(K_D\) term in Table 11.3.1B Reduction Terms, \(R_{dr}\), as follows:

1. For threaded fasteners where nominal diameter (see Appendix L) is greater than or equal to 0.25" and root diameter is less than 0.25", \(R_d = K_D K_\theta\).
Page 76

In Table 11.5.1A Edge Distance Requirements for loading parallel to grain should be:

<table>
<thead>
<tr>
<th>Direction of Loading</th>
<th>Minimum Edge Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parallel to Grain:</td>
<td></td>
</tr>
<tr>
<td>when (\ell / D = 6)</td>
<td>1.5D</td>
</tr>
<tr>
<td>when (\ell / D > 6)</td>
<td>(\text{1.5D or 1/2 the spacing between rows, whichever is greater})</td>
</tr>
</tbody>
</table>

(Remainder Unchanged)

95-101 In footnote 2 of Tables 11L-11R, diameter range for bending yield strengths should be revised as follows:

\[F_{yb} = 80,000 \text{ psi for } 0.177'' < D \leq 0.236'' \]
\[F_{yb} = 70,000 \text{ psi for } 0.236'' < D \leq 0.273'' \]

(Note: 0.236” replaces 0.244” and diameter range for \(F_{yb} = 70,000 \text{ psi} \) added.)

95 In Table 11L, design values for 0.242” diameter wood screws should be:

<table>
<thead>
<tr>
<th>Side Member Thickness</th>
<th>Wood Screw Diameter</th>
<th>Wood Screw Number</th>
<th>G=0.67 Red Oak</th>
<th>G=0.55 Mixed Maple</th>
<th>G=0.5 Douglas Fir-Larch</th>
<th>G=0.49 Douglas Fir-Larch (N)</th>
<th>G=0.46 Douglas Fir (S)</th>
<th>G=0.43 Hem-Fir</th>
<th>G=0.42 Spruce-Pine Fir</th>
</tr>
</thead>
<tbody>
<tr>
<td>t, in.</td>
<td>D, in.</td>
<td></td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
</tr>
<tr>
<td>1/2</td>
<td>0.242</td>
<td>14</td>
<td>167</td>
<td>133</td>
<td>119</td>
<td>116</td>
<td>109</td>
<td>101</td>
<td>99</td>
</tr>
<tr>
<td>5/8</td>
<td>0.242</td>
<td>14</td>
<td>203</td>
<td>154</td>
<td>135</td>
<td>131</td>
<td>122</td>
<td>111</td>
<td>108</td>
</tr>
<tr>
<td>3/4</td>
<td>0.242</td>
<td>14</td>
<td>213</td>
<td>178</td>
<td>157</td>
<td>152</td>
<td>139</td>
<td>126</td>
<td>122</td>
</tr>
<tr>
<td>1 1/4</td>
<td>0.242</td>
<td>14</td>
<td>212</td>
<td>177</td>
<td>162</td>
<td>159</td>
<td>150</td>
<td>141</td>
<td>138</td>
</tr>
<tr>
<td>1 1/2</td>
<td>0.242</td>
<td>14</td>
<td>212</td>
<td>177</td>
<td>162</td>
<td>159</td>
<td>150</td>
<td>141</td>
<td>138</td>
</tr>
<tr>
<td>1 3/4</td>
<td>0.242</td>
<td>14</td>
<td>212</td>
<td>177</td>
<td>162</td>
<td>159</td>
<td>150</td>
<td>141</td>
<td>138</td>
</tr>
</tbody>
</table>

96 In Table 11M, design values for 0.242” diameter wood screws should be:

<table>
<thead>
<tr>
<th>Side Member Thickness</th>
<th>Wood Screw Diameter</th>
<th>Wood Screw Number</th>
<th>G=0.67 Red Oak</th>
<th>G=0.55 Mixed Maple</th>
<th>G=0.5 Douglas Fir-Larch</th>
<th>G=0.49 Douglas Fir-Larch (N)</th>
<th>G=0.46 Douglas Fir (S)</th>
<th>G=0.43 Hem-Fir</th>
<th>G=0.42 Spruce-Pine Fir</th>
</tr>
</thead>
<tbody>
<tr>
<td>t, in.</td>
<td>D, in.</td>
<td></td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
<td>lbs.</td>
</tr>
<tr>
<td>0.075</td>
<td>0.242</td>
<td>14</td>
<td>203</td>
<td>174</td>
<td>161</td>
<td>158</td>
<td>151</td>
<td>142</td>
<td>138</td>
</tr>
<tr>
<td>0.105</td>
<td>0.242</td>
<td>14</td>
<td>212</td>
<td>183</td>
<td>169</td>
<td>166</td>
<td>159</td>
<td>150</td>
<td>147</td>
</tr>
<tr>
<td>0.120</td>
<td>0.242</td>
<td>14</td>
<td>219</td>
<td>188</td>
<td>175</td>
<td>171</td>
<td>164</td>
<td>154</td>
<td>151</td>
</tr>
<tr>
<td>0.134</td>
<td>0.242</td>
<td>14</td>
<td>225</td>
<td>194</td>
<td>180</td>
<td>177</td>
<td>169</td>
<td>160</td>
<td>156</td>
</tr>
<tr>
<td>0.179</td>
<td>0.242</td>
<td>14</td>
<td>250</td>
<td>217</td>
<td>202</td>
<td>198</td>
<td>189</td>
<td>179</td>
<td>175</td>
</tr>
<tr>
<td>0.239</td>
<td>0.242</td>
<td>14</td>
<td>282</td>
<td>240</td>
<td>221</td>
<td>217</td>
<td>206</td>
<td>194</td>
<td>189</td>
</tr>
</tbody>
</table>

America’s Forest & Paper People® - Improving Tomorrow’s Environment Today®
In Table 11N, design values for 0.177” diameter nails should be:

<table>
<thead>
<tr>
<th>Side Member Thickness</th>
<th>Nail Diameter</th>
<th>Pennyweight</th>
<th>Common Wire Nail</th>
<th>Box Nail</th>
<th>Sinker Nail</th>
<th>G=0.67 Red Silk</th>
<th>G=0.55 Mixed Maple</th>
<th>Southern Pine</th>
<th>G=0.5 Douglas Fir-Larch</th>
<th>G=0.48 Douglas Fir-Larch (N)</th>
<th>G=0.46 Douglas Fir-S Southern Pine (N)</th>
<th>G=0.43 Hem-Fir</th>
<th>G=0.42 Spruce-Pine-Fir</th>
<th>G=0.37 Redwood</th>
<th>G=0.36 Spruce-Pine-Fir (open grain)</th>
<th>G=0.36 Southern Pine-S Southern Pine</th>
<th>G=0.35 Western Cedars</th>
<th>G=0.35 Northern Species</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 0.177</td>
<td>20d</td>
<td>lbs</td>
</tr>
<tr>
<td>1 0.177</td>
<td>20d</td>
<td>lbs</td>
</tr>
<tr>
<td>1 1/4 0.177</td>
<td>20d</td>
<td>lbs</td>
</tr>
<tr>
<td>1 1/2 0.177</td>
<td>20d</td>
<td>lbs</td>
</tr>
<tr>
<td>1 3/4 0.177</td>
<td>20d</td>
<td>lbs</td>
</tr>
</tbody>
</table>

117 Equation 13.2-3 should be:

\[Q_w = q_w p^{0.8} C_A \]

(Note: \(C_A \) replaces \(C_D \))

152 In Appendix E.6 Sample Solution of Staggered Bolts, equation for \(Z_{RT-2}' \) should be:

\[Z_{RT-2}' = 2(240 \text{ psi})(3.125')(4'') = 6,000 \text{ lbs.} \]

160 In Table I1, fastener diameter range for 70,000 psi and 80,000 psi bending yield strength should be:

\(F_{yb} = 80,000 \text{ psi for 0.177” < D ≤ 0.236”} \)
\(F_{yb} = 70,000 \text{ psi for 0.236” < D ≤ 0.273”} \)

(Note: 0.236” replaces 0.244”.)

161 In Appendix J.5, equation for \(Z_\theta' \) should be:

\[Z_\theta' = \frac{Z_{\parallel}'Z_{\perp}'}{Z_{\parallel}'\sin^2\theta + Z_{\perp}'\cos^2\theta} \]

(Note: \(Z_{\perp}' \) replaces \(Z_{\perp} \))

167 Revise footnote 3 as follows:

3. Single lead thread shown. Thread length is at least four times the screw diameter or two-thirds of the screw diameter length, whichever is greater. Screws which are too short to accommodate the minimum thread length, have threads extending as close to the underside of the head as practicable.