BEAM DESIGN FORMULAS
WITH SHEAR AND MOMENT
DIAGRAMS

DESIGN AID No. 6
The American Wood Council (AWC) is part of the wood products group of the American Forest & Paper Association (AF&PA). AF&PA is the national trade association of the forest, paper, and wood products industry, representing member companies engaged in growing, harvesting, and processing wood and wood fiber, manufacturing pulp, paper, and paperboard products from both virgin and recycled fiber, and producing engineered and traditional wood products. For more information see www.afandpa.org.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Forest & Paper Association nor its members assume any responsibility for any particular design prepared from this publication. Those using this document assume all liability from its use.

Copyright © 2007
American Forest & Paper Association, Inc.

American Wood Council
1111 19th St., NW, Suite 800
Washington, DC 20036
202-463-4713
awcinfo@afandpa.org
www.awc.org

AMERICAN WOOD COUNCIL
**Introduction**

Figures 1 through 32 provide a series of shear and moment diagrams with accompanying formulas for design of beams under various static loading conditions.

Shear and moment diagrams and formulas are excerpted from the *Western Woods Use Book*, 4th edition, and are provided herein as a courtesy of Western Wood Products Association.

**Notations Relative to “Shear and Moment Diagrams”**

- \( E \) = modulus of elasticity, psi
- \( I \) = moment of inertia, in.\(^4\)
- \( L \) = span length of the bending member, ft.
- \( l \) = span length of the bending member, in.
- \( M \) = maximum bending moment, in.-lbs.
- \( P \) = total concentrated load, lbs.
- \( R \) = reaction load at bearing point, lbs.
- \( V \) = shear force, lbs.
- \( W \) = total uniform load, lbs.
- \( w \) = load per unit length, lbs./in.
- \( \Delta \) = deflection or deformation, in.
- \( x \) = horizontal distance from reaction to point on beam, in.

**List of Figures**

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Simple Beam – Uniformly Distributed Load</td>
<td>4</td>
</tr>
<tr>
<td>2</td>
<td>Simple Beam – Uniform Load Partially Distributed</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Simple Beam – Uniform Load Partially Distributed at One End</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Simple Beam – Uniform Load Partially Distributed at Each End</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>Simple Beam – Load Increasing Uniformly to One End</td>
<td>6</td>
</tr>
<tr>
<td>6</td>
<td>Simple Beam – Load Increasing Uniformly to Center</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>Simple Beam – Concentrated Load at Center</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>Simple Beam – Concentrated Load at Any Point</td>
<td>7</td>
</tr>
<tr>
<td>9</td>
<td>Simple Beam – Two Equal Concentrated Loads Symmetrically Placed</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>Simple Beam – Two Equal Concentrated Loads Unsymmetrically Placed</td>
<td>8</td>
</tr>
<tr>
<td>11</td>
<td>Simple Beam – Two Unequal Concentrated Loads Unsymmetrically Placed</td>
<td>9</td>
</tr>
<tr>
<td>12</td>
<td>Cantilever Beam – Uniformly Distributed Load</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>Cantilever Beam – Concentrated Load at Free End</td>
<td>10</td>
</tr>
<tr>
<td>14</td>
<td>Cantilever Beam – Concentrated Load at Any Point</td>
<td>10</td>
</tr>
<tr>
<td>15</td>
<td>Beam Fixed at One End, Supported at Other – Uniformly Distributed Load</td>
<td>11</td>
</tr>
<tr>
<td>16</td>
<td>Beam Fixed at One End, Supported at Other – Concentrated Load at Center</td>
<td>11</td>
</tr>
<tr>
<td>17</td>
<td>Beam Fixed at One End, Supported at Other – Concentrated Load at Any Point</td>
<td>11</td>
</tr>
<tr>
<td>18</td>
<td>Beam Overhanging One Support – Uniformly Distributed Load</td>
<td>12</td>
</tr>
<tr>
<td>19</td>
<td>Beam Overhanging One Support – Uniformly Distributed Load on Overhang</td>
<td>13</td>
</tr>
<tr>
<td>20</td>
<td>Beam Overhanging One Support – Concentrated Load at End of Overhang</td>
<td>13</td>
</tr>
<tr>
<td>21</td>
<td>Beam Overhanging One Support – Concentrated Load at Any Point Between Supports</td>
<td>14</td>
</tr>
<tr>
<td>22</td>
<td>Beam Overhanging Both Supports – Unequal Overhangs – Uniformly Distributed Load</td>
<td>14</td>
</tr>
<tr>
<td>23</td>
<td>Beam Fixed at Both Ends – Uniformly Distributed Load</td>
<td>15</td>
</tr>
<tr>
<td>24</td>
<td>Beam Fixed at Both Ends – Concentrated Load at Center</td>
<td>15</td>
</tr>
<tr>
<td>25</td>
<td>Beam Fixed at Both Ends – Concentrated Load at Any Point</td>
<td>15</td>
</tr>
<tr>
<td>26</td>
<td>Continuous Beam – Two Equal Spans – Uniform Load on One Span</td>
<td>16</td>
</tr>
<tr>
<td>27</td>
<td>Continuous Beam – Two Equal Spans – Concentrated Load at Center of One Span</td>
<td>17</td>
</tr>
<tr>
<td>28</td>
<td>Continuous Beam – Two Equal Spans – Concentrated Load at Any Point</td>
<td>17</td>
</tr>
<tr>
<td>29</td>
<td>Continuous Beam – Two Equal Spans – Uniformly Distributed Load</td>
<td>18</td>
</tr>
<tr>
<td>30</td>
<td>Continuous Beam – Two Equal Spans – Two Equal Concentrated Loads Symmetrically Placed</td>
<td>18</td>
</tr>
<tr>
<td>31</td>
<td>Continuous Beam – Two Unequal Spans – Uniformly Distributed Load</td>
<td>19</td>
</tr>
<tr>
<td>32</td>
<td>Continuous Beam – Two Unequal Spans – Concentrated Load on Each Span Symmetrically Placed</td>
<td>19</td>
</tr>
</tbody>
</table>
**Figure 1** Simple Beam – Uniformly Distributed Load

\[ R = V = \frac{w\ell}{2} \]

\[ V_x = w\left(\frac{\ell}{2} - x\right) \]

\[ M_{max} \text{ (at center)} = \frac{w\ell^2}{8} \]

\[ M_x = \frac{ux}{2} (\ell - x) \]

\[ \Delta_{max} \text{ (at center)} = \frac{5w\ell^4}{384 EI} \]

\[ \Delta_x = \frac{ux}{24 EI} (\ell^3 - 2\ell x^2 + x^3) \]

---

**Figure 2** Simple Beam – Uniform Load Partially Distributed

\[ R_1 = V_1 \text{ (max when } a < c \text{)} = \frac{wb}{2\ell} (2c + b) \]

\[ R_2 = V_2 \text{ (max when } a > c \text{)} = \frac{wb}{2\ell} (2a + b) \]

\[ V_x \text{ (when } x > a \text{ and } < (a + b) \text{)} = R_1 - w(x - a) \]

\[ M_{max} \text{ (at } x = a + \frac{R_1}{w} \text{)} = R_1 \left(a + \frac{R_1}{2w}\right) \]

\[ M_x \text{ (when } x < a \text{)} = R_1 x \]

\[ M_x \text{ (when } x > a \text{ and } < (a + b) \text{)} = R_1 x - \frac{w}{2} (x - a)^2 \]

\[ M_x \text{ (when } x > (a + b) \text{)} = R_2 (\ell - x) \]
Figure 3  Simple Beam – Uniform Load Partially Distributed at One End

\[ R_1 = V_1 = \frac{wa}{2\ell} (2\ell - a) \]
\[ R_2 = V_2 = \frac{wa^2}{2\ell} \]
\[ V_x \quad \text{(when } x < a) \quad . . . . . = R_1 - wx \]
\[ M_{\max} \left( \text{at } x = \frac{R_1}{w} \right) \quad . . . . . = \frac{R_1^2}{2w} \]
\[ M_x \quad \text{(when } x < a) \quad . . . . . = R_1 x - \frac{wx^2}{2} \]
\[ M_x \quad \text{(when } x > a) \quad . . . . . = R_2 (\ell - x) \]
\[ \Delta_x \quad \text{(when } x < a) \quad . . . . . = \frac{wx}{24 E I \ell} \left( a^2 (2\ell - a)^2 - 2ax (2\ell - a) + \ell x^3 \right) \]
\[ \Delta_x \quad \text{(when } x > a) \quad . . . . . = \frac{wa^2(\ell - x)}{24 E I \ell} (4x\ell - 2x^2 - a^2) \]

Figure 4  Simple Beam – Uniform Load Partially Distributed at Each End

\[ R_1 = V_1 = \frac{w_1 a (2\ell - a) + w_2 c^2}{2\ell} \]
\[ R_2 = V_2 = \frac{w_2 c (2\ell - c) + w_1 a^2}{2\ell} \]
\[ V_x \quad \text{(when } x < a) \quad . . . . . = R_1 - w_1 x \]
\[ V_x \quad \text{(when } x > a \text{ and } < (a + b)) \quad . . . . . = R_1 - w_1 a \]
\[ V_x \quad \text{(when } x > (a + b)) \quad . . . . . = R_2 - w_2 (\ell - x) \]
\[ M_{\max} \left( \text{at } x = \frac{R_1}{w_1} \text{ when } R_1 < w_1 a \right) \quad . . . . . = \frac{R_1^2}{2w_1} \]
\[ M_{\max} \left( \text{at } x = \ell - \frac{R_2}{w_2} \text{ when } R_2 < w_2 c \right) \quad = \frac{R_2^2}{2w_2} \]
\[ M_x \quad \text{(when } x < a) \quad . . . . . = R_1 x - \frac{w_1 x^2}{2} \]
\[ M_x \quad \text{(when } x > a \text{ and } < (a + b)) \quad . . . . . = R_1 x - \frac{w_1 a}{2} (2x - a) \]
\[ M_x \quad \text{(when } x > (a + b)) \quad . . . . . = R_2 (\ell - x) - \frac{w_2 (\ell - x)^2}{2} \]
Figure 5  Simple Beam – Load Increasing Uniformly to One End

\[ R_1 = \frac{V_1}{3} = \frac{W}{3} \]
\[ R_2 = \frac{V_2}{3} = \frac{2W}{3} \]
\[ V_x = \frac{W}{3} - \frac{Wx^2}{\ell^2} \]
\[ M_{\text{max}} \left( \text{at } x = \frac{\ell}{\sqrt{3}} = 0.5774 \ell \right) = \frac{2W\ell}{9\sqrt{3}} = 0.1283W\ell \]
\[ M_x \left( \text{at } x = \ell \right) = \frac{Wx}{3\ell^2} \left( \ell^2 - x^2 \right) \]
\[ \Delta_{\text{max}} \left( \text{at } x = \ell \right) = \frac{W \ell^3}{180EI \ell^2} \left( 3x^4 - 10\ell^2 x^2 + 7\ell^4 \right) \]

Figure 6  Simple Beam – Load Increasing Uniformly to Center

\[ R = \frac{W}{2} \]
\[ V_x \left( \text{when } x < \frac{\ell}{2} \right) = \frac{W}{2\ell^2} \left( \ell^2 - 4x^2 \right) \]
\[ M_{\text{max}} \left( \text{at center} \right) = \frac{W\ell}{6} \]
\[ M_x \left( \text{when } x < \frac{\ell}{2} \right) = \frac{Wx}{3\ell^2} \left( 1 - \frac{2x^2}{3\ell^2} \right) \]
\[ \Delta_{\text{max}} \left( \text{at center} \right) = \frac{W \ell^3}{60EI} \]
\[ \Delta_x \left( \text{at center} \right) = \frac{Wx}{480EI \ell^2} \left( 5\ell^2 - 4x^2 \right)^2 \]
**Figure 7** Simple Beam – Concentrated Load at Center

\[ R = V \quad \ldots \quad = \frac{P}{2} \]
\[ M_{\text{max}} \text{ (at point of load)} \quad \ldots \quad = \frac{P\ell}{4} \]
\[ M_x \left( \text{when } x < \frac{\ell}{2} \right) \quad \ldots \quad = \frac{Px}{2} \]
\[ \Delta_{\text{max}} \text{ (at point of load)} \quad \ldots \quad = \frac{P\ell^3}{48EI} \]
\[ \Delta_x \left( \text{when } x < \frac{\ell}{2} \right) \quad \ldots \quad = \frac{Px}{48EI} (3\ell^2 - 4x^2) \]

**Figure 8** Simple Beam – Concentrated Load at Any Point

\[ R_1 = V_1 \; \text{ (max when } a < b \) \quad \ldots \quad = \frac{Pb}{\ell} \]
\[ R_2 = V_2 \; \text{ (max when } a > b \) \quad \ldots \quad = \frac{Pa}{\ell} \]
\[ M_{\text{max}} \text{ (at point of load)} \quad \ldots \quad = \frac{Pab}{\ell} \]
\[ M_x \left( \text{when } x < a \right) \quad \ldots \quad = \frac{Pbx}{\ell} \]
\[ \Delta_{\text{max}} \left( \text{at } x = \sqrt{\frac{a(a + 2b)}{3}} \text{ when } a > b \right) \quad \ldots \quad = \frac{Pab(a + 2b)\sqrt{3(a + 2b)}}{27EIl} \]
\[ \Delta_x \text{ (at point of load)} \quad \ldots \quad = \frac{Pa^2b^2}{3EIl} \]
\[ \Delta_x \left( \text{when } x < a \right) \quad \ldots \quad = \frac{Pbx}{6EIl} (\ell^2 - b^2 - x^2) \]
\[ \Delta_x \left( \text{when } x > a \right) \quad \ldots \quad = \frac{Pa(\ell - x)}{6EIl} (2\ell x - x^2 - a^2) \]
Figure 9  Simple Beam – Two Equal Concentrated Loads Symmetrically Placed

\[ R = V \quad \ldots \quad = P \]

\[ M_{\text{max}} \text{ (between loads)} \quad \ldots \quad = Pa \]

\[ M_{\varepsilon} \text{ (when } x < a \text{)} \quad \ldots \quad = Px \]

\[ \Delta_{\text{max}} \text{ (at center)} \quad \ldots \quad = \frac{Pa}{24EI} (3\ell^2 - 4a^2) \]

\[ \Delta_{\varepsilon} \text{ (when } x < a \text{)} \quad \ldots \quad = \frac{Px}{6EI} (3\ell a - 3a^2 - x^2) \]

\[ \Delta_{\varepsilon} \text{ (when } x > a \text{ and } < (\ell - a) \text{)} \quad \ldots \quad = \frac{Pa}{6EI} (3\ell x - 3x^2 - a^2) \]

Figure 10  Simple Beam – Two Equal Concentrated Loads Unsymmetrically Placed

\[ R_1 = V_1 \text{ (max when } a < b \text{)} \quad \ldots \quad = \frac{P}{\ell} (\ell - a + b) \]

\[ R_2 = V_2 \text{ (max when } a > b \text{)} \quad \ldots \quad = \frac{P}{\ell} (\ell - b + a) \]

\[ V_\varepsilon \text{ (when } x > a \text{ and } < (\ell - b) \text{)} \quad \ldots \quad = \frac{P}{\ell} (b - a) \]

\[ M_1 \text{ (max when } a > b \text{)} \quad \ldots \quad = R_1 a \]

\[ M_2 \text{ (max when } a < b \text{)} \quad \ldots \quad = R_2 b \]

\[ M_{\varepsilon} \text{ (when } x < a \text{)} \quad \ldots \quad = R_1 x \]

\[ M_{\varepsilon} \text{ (when } x > a \text{ and } < (\ell - b) \text{)} \quad \ldots \quad = R_1 x - P(x - a) \]
**Figure 11**  
**Simple Beam – Two Unequal Concentrated Loads Unsymmetrically Placed**

\[ R_1 = V_1 = \frac{P_1(\ell - a) + P_2b}{\ell} \]

\[ R_2 = V_2 = \frac{P_1a + P_2(\ell - b)}{\ell} \]

\[ V_x \quad \text{(when} \ x > a \ \text{and} \ (\ell - b) \ \text{)} \quad = \quad R_1 - P_1 \]

\[ M_1 \quad \text{(max when} \ R_1 < P_1) \quad = \quad R_1a \]

\[ M_2 \quad \text{(max when} \ R_2 < P_2) \quad = \quad R_2b \]

\[ M_x \quad \text{(when} \ x < a) \quad = \quad R_1x \]

\[ M_x \quad \text{(when} \ x > a \ \text{and} \ (\ell - b) \ \text{)} \quad = \quad R_1x - P_1(x - a) \]

**Figure 12**  
**Cantilever Beam – Uniformly Distributed Load**

\[ R = V = w\ell \]

\[ V_x = wx \]

\[ M_{\text{max}} \quad \text{(at fixed end)} \quad \frac{w\ell^2}{2} \]

\[ M_x = \frac{wx^2}{2} \]

\[ \Delta_{\text{max}} \quad \text{(at free end)} \quad \frac{w\ell^4}{8EI} \]

\[ \Delta_x = \frac{w}{24EI} (x^4 - 4\ell^3x + 3\ell^4) \]
**Figure 13** Cantilever Beam – Concentrated Load at Free End

\[ R = V = P \]
\[ M_{\text{max}} \text{ (at fixed end)} = P\ell \]
\[ M_x = Px \]
\[ \Delta_{\text{max}} \text{ (at free end)} = \frac{P\ell^3}{3EI} \]
\[ \Delta_x = \frac{P}{6EI}(2\ell^3 - 3\ell^2x + x^3) \]

**Figure 14** Cantilever Beam – Concentrated Load at Any Point

\[ R = V = P \]
\[ M_{\text{max}} \text{ (at fixed end)} = Pb \]
\[ M_x \text{ (when } x > a) = P(x - a) \]
\[ \Delta_{\text{max}} \text{ (at free end)} = \frac{Pb^2}{6EI}(3\ell - b) \]
\[ \Delta_x \text{ (at point of load)} = \frac{Pb^3}{3EI} \]
\[ \Delta_x \text{ (when } x < a) = \frac{Pb^2}{6EI}(3\ell - 3x - b) \]
\[ \Delta_x \text{ (when } x > a) = \frac{P(\ell - x)^2}{6EI}(3b - \ell + x) \]
Figure 15  Beam Fixed at One End, Supported at Other – Uniformly Distributed Load

\[ R_1 = V_1 = \frac{3w\ell}{8} \]
\[ R_2 = V_2 = \frac{5w\ell}{8} \]
\[ V_x = R_1 - wx \]
\[ M_{\text{max}} = \frac{w\ell^2}{8} \]
\[ M_1 \left( \text{at} \ x = \frac{3\ell}{8} \right) = \frac{9w\ell^2}{128} \]
\[ M_x = R_1x - \frac{wx^2}{2} \]
\[ \Delta_{\text{max}} \left( \text{at} \ x = \frac{\ell}{16}(1 + \sqrt{33}) = .4215\ell \right) = \frac{w\ell^4}{185EI} \]
\[ \Delta_x = \frac{wx}{48EI}(\ell^3 - 3\ell x^2 + 2x^3) \]

Figure 16  Beam Fixed at One End, Supported at Other – Concentrated Load at Center

\[ R_1 = V_1 = \frac{5P}{16} \]
\[ R_2 = V_2 = \frac{11P}{16} \]
\[ M_{\text{max}} \left( \text{at} \ \text{fixed end} \right) = \frac{3P\ell}{16} \]
\[ M_1 \left( \text{at} \ \text{point of load} \right) = \frac{5P\ell}{32} \]
\[ M_x \left( \text{when} \ x < \frac{\ell}{2} \right) = \frac{5Px}{16} \]
\[ M_x \left( \text{when} \ x > \frac{\ell}{2} \right) = P \left( \frac{\ell}{2} - \frac{11x}{16} \right) \]
\[ \Delta_{\text{max}} \left( \text{at} \ x = \frac{\ell}{15} = .4472\ell \right) = \frac{P\ell^3}{48EI\sqrt{5}} = .009317\frac{P\ell^3}{EI} \]
\[ \Delta_x \left( \text{at} \ \text{point of load} \right) = \frac{7P\ell^3}{768EI} \]
\[ \Delta_x \left( \text{when} \ x < \frac{\ell}{2} \right) = \frac{Px}{96EI} (3\ell^2 - 5x^2) \]
\[ \Delta_x \left( \text{when} \ x > \frac{\ell}{2} \right) = \frac{P}{96EI} (x - \ell)^2(11x - 2\ell) \]
Figure 17  Beam Fixed at One End, Supported at Other – Concentrated Load at Any Point

\[ R_1 = V_1 \quad \ldots \ldots \ldots \ldots \ldots = \frac{Pb^2}{2\ell^3} (a + 2\ell) \]
\[ R_2 = V_2 \quad \ldots \ldots \ldots \ldots \ldots = \frac{Pa}{2\ell^3} (3\ell^2 - a^2) \]
\[ M_1 \text{ (at point of load)} \quad \ldots \ldots \ldots \ldots = R_1 a \]
\[ M_2 \text{ (at fixed end)} \quad \ldots \ldots \ldots \ldots = \frac{Pab}{2\ell^3} (a + \ell) \]
\[ M_s \text{ (when } x < a) \quad \ldots \ldots \ldots \ldots = R_1 x \]
\[ M_s \text{ (when } x > a) \quad \ldots \ldots \ldots \ldots = R_1 x - P(x - a) \]
\[ \Delta_{\text{max}} \text{ (when } a < 0.414\ell \text{ at } x = \ell - \frac{\ell^2 + a^2}{3\ell^2 - a^2} \ldots = \frac{Pb}{3EI} \frac{(\ell^2 - a^2)^3}{(3\ell^2 - a^2)^2} \]
\[ \Delta_{\text{max}} \text{ (when } a > 0.414\ell \text{ at } x = \ell \frac{a}{2\ell + a} \ldots = \frac{Pb}{6EI} \frac{a}{2\ell + a} \]
\[ \Delta_s \text{ (at point of load)} \ldots \ldots \ldots \ldots = \frac{Pa}{12EI\ell^3} (3\ell + a) \]
\[ \Delta_s \text{ (when } x < a) \ldots \ldots \ldots \ldots = \frac{Pb^2}{12EI\ell^3} (3a\ell^2 - 2ax^2 - ax^2) \]
\[ \Delta_s \text{ (when } x > a) \ldots \ldots \ldots \ldots = \frac{Pa}{12EI\ell^3} (\ell - x)^2(3\ell^2 x - a^2 x - 2a^2 \ell) \]

Figure 18  Beam Overhanging One Support – Uniformly Distributed Load

\[ R_1 = V_1 \quad \ldots \ldots \ldots \ldots = \frac{w}{2\ell} (\ell^2 - a^2) \]
\[ R_2 = V_2 + V_1 \quad \ldots \ldots \ldots \ldots = \frac{w}{2\ell} (\ell + a)^2 \]
\[ V_2 \quad \ldots \ldots \ldots \ldots = wa \]
\[ V_3 \quad \ldots \ldots \ldots \ldots = \frac{w}{2\ell} (\ell^2 + a^2) \]
\[ V_s \text{ (between supports)} \ldots \ldots \ldots = R_1 - w x \]
\[ V_{s_1} \text{ (for overhang)} \ldots \ldots \ldots = w(a - x) \]
\[ M_1 \text{ (at } x = \frac{\ell}{2} \left(1 - \frac{a^2}{\ell^2}\right) \ldots \ldots \ldots = \frac{w}{8\ell^2} (\ell + a)^2(\ell - a)^2 \]
\[ M_2 \text{ (at } R_2) \ldots \ldots \ldots \ldots = \frac{wa^2}{2} \]
\[ M_s \text{ (between supports)} \ldots \ldots \ldots = \frac{wx}{2\ell} (\ell^2 - a^2 - x\ell) \]
\[ M_{s_1} \text{ (for overhang)} \ldots \ldots \ldots = \frac{w}{2} (a - x)^3 \]
\[ \Delta_s \text{ (between supports)} \ldots \ldots \ldots = \frac{wx}{24EI\ell} (\ell^4 - 2\ell^2 x^2 + \ell x^3 - 2a^2 \ell^2 + 2a^2 x^2) \]
\[ \Delta_{s_1} \text{ (for overhang)} \ldots \ldots \ldots = \frac{wx}{24EI} (4a^2 \ell - \ell^3 + 6a^2 x_1 - 4ax_1^2 + x_1^3) \]
Figure 19  Beam Overhanging One Support – Uniformly Distributed Load on Overhang

\[ R_1 = V_1 \ldots \ldots \ldots \ldots \ldots = \frac{wa^2}{2\ell} \]
\[ R_2 = V_1 + V_2 \ldots \ldots \ldots \ldots \ldots = \frac{wa(2\ell + a)}{2\ell} \]
\[ V_2 \ldots \ldots \ldots \ldots \ldots = wa \]
\[ V_{x_1} \text{ (for overhang)} \ldots \ldots \ldots = wa(a - x_1) \]
\[ M_{\text{max}} \text{ (at } R_1) \ldots \ldots \ldots = \frac{wa^2}{2\ell} \]
\[ M_x \text{ (between supports)} \ldots \ldots \ldots = \frac{wa^2 \ell}{2\ell} \]
\[ M_{x_1} \text{ (for overhang)} \ldots \ldots \ldots = \frac{w}{2}(a - x_1)^2 \]
\[ \Delta_{\text{max}} \left( \text{between supports at } x = \frac{\ell}{\sqrt{3}} \right) = \frac{wa^2 \ell^3}{18\sqrt{3}EI} = .03208 \frac{wa^2 \ell^3}{EI} \]
\[ \Delta_{\text{max}} \text{ (for overhang at } x_1 = a) \ldots \ldots = \frac{wa^3}{24EI} (4\ell + 3a) \]
\[ \Delta_x \text{ (between supports)} \ldots \ldots \ldots = \frac{wa^2 \ell}{12EI} (\ell^2 - x^2) \]
\[ \Delta_{x_1} \text{ (for overhang)} \ldots \ldots \ldots = \frac{wa_1^3}{24EI} (4a^2 \ell + 6a^2 x_1 - 4ax_1^2 + x_1^3) \]

Figure 20  Beam Overhanging One Support – Concentrated Load at End of Overhang

\[ R_1 = V_1 \ldots \ldots \ldots \ldots \ldots = \frac{Pa}{\ell} \]
\[ R_2 = V_1 + V_2 \ldots \ldots \ldots \ldots \ldots = \frac{P}{\ell} (\ell + a) \]
\[ V_2 \ldots \ldots \ldots \ldots \ldots = P \]
\[ M_{\text{max}} \text{ (at } R_1) \ldots \ldots \ldots = Pa \]
\[ M_x \text{ (between supports)} \ldots \ldots \ldots = \frac{Pa \ell}{\ell} \]
\[ M_{x_1} \text{ (for overhang)} \ldots \ldots \ldots = P(a - x_1) \]
\[ \Delta_{\text{max}} \left( \text{between supports at } x = \frac{\ell}{\sqrt{3}} \right) = \frac{Pa \ell^3}{9\sqrt{3}EI} = .06415 \frac{Pa \ell^3}{EI} \]
\[ \Delta_{\text{max}} \text{ (for overhang at } x_1 = a) \ldots \ldots = \frac{Pa^2}{3EI} (\ell + a) \]
\[ \Delta_x \text{ (between supports)} \ldots \ldots \ldots = \frac{Pa \ell}{6EI} (\ell^2 - x^2) \]
\[ \Delta_{x_1} \text{ (for overhang)} \ldots \ldots \ldots = \frac{P_1}{6EI} (2a\ell + 3ax_1 - x_1^2) \]
Figure 21  Beam Overhanging One Support – Concentrated Load at Any Point Between Supports

\[
R_1 = V_1 \text{ (max when } a < b) \quad \cdots \quad = \frac{Pb}{\ell} \\
R_2 = V_2 \text{ (max when } a > b) \quad \cdots \quad = \frac{Pa}{\ell} \\
M_{\text{max}} \text{ (at point of load)} \quad \cdots \quad = \frac{Pab}{\ell} \\
M_x \text{ (when } x < a) \quad \cdots \quad = \frac{Pbx}{\ell} \\
\Delta_{\text{max}} \left( \text{ at } x = \frac{a(a+2b)^2}{3} \text{ when } a > b \right) \quad = \frac{P(b+2b+3a+2b^2)}{27EI\ell} \\
\Delta_a \text{ (at point of load)} \quad \cdots \quad = \frac{Pa^2b^2}{3EI\ell} \\
\Delta_x \text{ (when } x < a) \quad \cdots \quad = \frac{Pbx}{6EI\ell} \left( \ell^2 - b^2 - x^2 \right) \\
\Delta_x \text{ (when } x > a) \quad \cdots \quad = \frac{Pa(\ell-x)}{6EI\ell} \left( 2\ell x - x^2 - a^2 \right) \\
\Delta_{\text{ini}} \quad \cdots \quad = \frac{Pabx_{1+}}{6EI\ell} (\ell + a)
\]

Figure 22  Beam Overhanging Both Supports – Unequal Overhangs – Uniformly Distributed Load

\[
R_1 \quad \cdots \quad = \frac{w\ell}{2} (\ell - 2c) \\
R_2 \quad \cdots \quad = \frac{w\ell}{2} (\ell - 2a) \\
V_1 \quad \cdots \quad = wa \\
V_2 \quad \cdots \quad = R_1 - V_1 \\
V_3 \quad \cdots \quad = R_2 - V_1 \\
V_4 \quad \cdots \quad = wc \\
V_{x_1} \quad \cdots \quad = V_1 - wx_1 \\
V_x \text{ (when } x < \ell) \quad \cdots \quad = R_1 - w(a + x_1) \\
V_m \text{ (when } a < c) \quad \cdots \quad = R_2 - wc \\
M_1 \quad \cdots \quad = -\frac{wa^2}{2} \\
M_2 \quad \cdots \quad = -\frac{wc^2}{2} \\
M_3 \quad \cdots \quad = R_1 \left( R_2 - a \right) \\
M_x \left( \text{max when } x = \frac{R_1}{w} - a \right) \quad \cdots \quad = R_1 x - \frac{w(a + x)^2}{2}
\]
Figure 23  Beam Fixed at Both Ends – Uniformly Distributed Load

\[ R = V \quad \cdots = \frac{w\ell}{2} \]

\[ V_x \quad \cdots = w\left(\frac{\ell}{2} - x\right) \]

\[ M_{\text{max}} \text{ (at ends)} \quad \cdots = \frac{w\ell^2}{12} \]

\[ M_i \text{ (at center)} \quad \cdots = \frac{w\ell^2}{24} \]

\[ M_x \quad \cdots = \frac{w(6\ell x - \ell^2 - 6x^2)}{12} \]

\[ \Delta_{\text{max}} \text{ (at center)} \quad \cdots = \frac{w\ell^4}{384EI} \]

\[ \Delta_x \quad \cdots = \frac{wx^2}{24EI} (\ell - x)^2 \]

Figure 24  Beam Fixed at Both Ends – Concentrated Load at Center

\[ R = V \quad \cdots = \frac{P}{2} \]

\[ M_{\text{max}} \text{ (at center and ends)} \quad \cdots = \frac{P\ell}{8} \]

\[ M_x \left(\text{when } x < \frac{\ell}{2}\right) \quad \cdots = \frac{P}{8}(4x - \ell) \]

\[ \Delta_{\text{max}} \text{ (at center)} \quad \cdots = \frac{P\ell^3}{192EI} \]

\[ \Delta_x \left(\text{when } x < \frac{\ell}{2}\right) \quad \cdots = \frac{Px^2}{48EI} (3\ell - 4x) \]
Figure 25  Beam Fixed at Both Ends – Concentrated Load at Any Point

\[ R_1 = V_1 \quad \text{max when } a < b \quad \therefore \quad = \frac{Pb^2}{\ell^3} (3a + b) \]
\[ R_2 = V_2 \quad \text{max when } a > b \quad \therefore \quad = \frac{Pb^2}{\ell^3} (a + 3b) \]
\[ M_1 \quad \text{max when } a < b \quad \therefore \quad = \frac{Pab^2}{\ell^2} \]
\[ M_2 \quad \text{max when } a > b \quad \therefore \quad = \frac{Pab^2}{\ell^2} \]
\[ M_3 \quad \text{at point of load} \quad \therefore \quad = \frac{2Pa^3b^3}{\ell^3} \]
\[ M_4 \quad \text{when } x < a \quad \therefore \quad = R_1x - \frac{Pab^2}{\ell^2} \]
\[ \Delta_{\text{max}} \quad \text{when } a > b \text{ at } x = \frac{2 \alpha}{3a + b} \quad \therefore \quad = \frac{2Pa^3b^3}{3EI(3a + b)^2} \]
\[ \Delta_4 \quad \text{at point of load} \quad \therefore \quad = \frac{Pa^3b^3}{3EI^3} \]
\[ \Delta_4 \quad \text{when } x < a \quad \therefore \quad = \frac{Pb^3x^2}{6EI^3} (3a - 3ax - bx) \]

Figure 26  Continuous Beam – Two Equal Spans – Uniform Load on One Span

\[ R_1 = V_1 \quad \therefore \quad = \frac{7}{16} w\ell \]
\[ R_2 = V_2 + V_1 \quad \therefore \quad = \frac{5}{8} w\ell \]
\[ R_3 = V_1 \quad \therefore \quad = -\frac{1}{16} w\ell \]
\[ V_2 \quad \therefore \quad = \frac{9}{16} w\ell \]
\[ M_{\text{max}} \quad \text{at } x = \frac{7}{16} \ell \quad \therefore \quad = \frac{49}{512} w\ell^2 \]
\[ M_1 \quad \text{at support } R_1 \quad \therefore \quad = \frac{1}{16} w\ell^2 \]
\[ M_2 \quad \text{when } x < \ell \quad \therefore \quad = \frac{wx}{16} (7\ell - 8x) \]
Figure 27  Continuous Beam – Two Equal Spans – Concentrated Load at Center of One Span

\[ R_1 = V_1 = \frac{13}{32} P \]
\[ R_2 = V_2 + V_1 = \frac{11}{16} P \]
\[ R_3 = V_3 = -\frac{3}{32} P \]
\[ V_2 = \frac{19}{32} P \]
\[ M_{\text{max}} \text{ (at point of load)} = \frac{13}{64} P\ell \]
\[ M_i \text{ (at support } R_2) = \frac{3}{32} P\ell \]

Figure 28  Continuous Beam – Two Equal Spans – Concentrated Load at Any Point

\[ R_1 = V_1 = \frac{Pb}{4\ell^3} (4\ell^2 - a(\ell + a)) \]
\[ R_2 = V_2 + V_1 = \frac{Pa}{2\ell^3} (2\ell^2 + b(\ell + a)) \]
\[ R_3 = V_3 = -\frac{Pab}{4\ell^3} (\ell + a) \]
\[ V_2 = \frac{Pb}{4\ell^3} (4\ell^2 + b(\ell + a)) \]
\[ M_{\text{max}} \text{ (at point of load)} = \frac{Pab}{4\ell^3} (4\ell^2 - a(\ell + a)) \]
\[ M_i \text{ (at support } R_2) = \frac{Pab}{4\ell^3} (\ell + a) \]
Figure 29  Continuous Beam – Two Equal Spans – Uniformly Distributed Load

\[ R_1 = V_1 = R_3 = V_3 = \frac{3w\ell}{8} \]
\[ R_2 = \frac{10w\ell}{8} \]
\[ V_2 = V_{\text{max}} = \frac{5w\ell}{8} \]
\[ M_1 = \frac{w\ell^2}{8} \]
\[ M_2 \left( \text{at } \frac{3\ell}{8} \right) = \frac{9w\ell^2}{128} \]
\[ \Delta_{\text{max}} (\text{at } 0.4215 \ell, \text{approx. from } R_1 \text{ and } R_3) = \frac{w\ell^4}{185EI} \]

Figure 30  Continuous Beam – Two Equal Spans – Two Equal Concentrated Loads Symmetrically Placed

\[ R_1 = V_1 = R_2 = V_3 = \frac{5P}{16} \]
\[ R_2 = 2V_2 = \frac{11P}{8} \]
\[ V_2 = P - R_1 = \frac{11P}{16} \]
\[ V_{\text{max}} = V_2 \]
\[ M_1 = -\frac{3P\ell}{16} \]
\[ M_2 = \frac{5P\ell}{32} \]
\[ M_x (\text{when } x < a) = R_1x \]
Figure 31  Continuous Beam – Two Unequal Spans – Uniformly Distributed Load

\[ R_1 = \frac{M_1}{\ell_1} + \frac{w\ell_1}{2} \]
\[ R_2 = w\ell_1 + w\ell_2 - R_1 - R_3 \]
\[ R_3 = V_4 = \frac{M_1}{\ell_2} + \frac{w\ell_2}{2} \]
\[ V_1 = R_1 - V_4 \]
\[ V_2 = w\ell_2 - R_3 \]
\[ M_4 = -\frac{w\ell_1^3 + w\ell_2^3}{8(\ell_1 + \ell_2)} \]
\[ M_{x_1} \left( \text{when } x_1 = \frac{R_1}{w} \right) = R_1x_1 - \frac{wx_1^2}{2} \]
\[ M_{x_2} \left( \text{when } x_2 = \frac{R_3}{w} \right) = R_3x_2 - \frac{wx_2^2}{2} \]

Figure 32  Continuous Beam – Two Unequal Spans – Concentrated Load on Each Span Symmetrically Placed

\[ R_1 = \frac{M_1}{\ell_1} + \frac{P_1}{2} \]
\[ R_2 = P_1 + P_2 - R_1 - R_3 \]
\[ R_3 = \frac{M_1}{\ell_2} + \frac{P_2}{2} \]
\[ V_1 = R_1 \]
\[ V_2 = P_1 - R_1 \]
\[ V_3 = P_2 - R_3 \]
\[ V_4 = R_3 \]
\[ M_4 = -\frac{3}{16} \left( \frac{P_1\ell_1^2 + P_2\ell_2^2}{\ell_1 + \ell_2} \right) \]
\[ M_{x_1} = R_1a \]
\[ M_{x_2} = R_2b \]