WOOD STRUCTURAL DESIGN DATA

American Wood Council
American Forest & Paper Association
The American Wood Council (AWC) is the wood products division of the American Forest & Paper Association (AF&PA). AF&PA is the national trade association of the forest, paper and wood products industry, representing member companies engaged in growing, harvesting and processing wood and wood fiber, manufacturing pulp, paper and paperboard products from both virgin and recycled fiber, and producing engineered and traditional wood products. For more information see www.afandpa.org.

While every effort has been made to insure the accuracy of the information presented, and special effort has been made to assure that the information reflects the state-of-the-art, neither the American Forest & Paper Association nor its members assume any responsibility for any particular design prepared from this publication. Those using this document assume all liability from its use.
FOREWORD

Wood in the form of lumber and timbers has been used as a major structural material for centuries. Originally the material of craftsmen, wood is now the material of the engineer who uses technical data to design today's sophisticated structures.

Wood Structural Design Data, 1986 Edition, provides information relating to design of typical wood structural members. These data are augmented by reference to the National Design Specification for Wood Construction, particularly on the subject of design stresses. Wood Structural Design Data was first published in 1934, with revised editions issued periodically to take into account new data and developments in wood design.

Tabular data in this volume are presented primarily as a convenient aid in design of the most frequently encountered elements of wood structural framing. Hence, certain subjects are only summarized in the text to indicate their relationships to the tabular data. More detailed information is available in other publications, many of which are listed as References.

In preparation of this and previous editions, information from the regional lumber manufacturers associations provided valuable data. Reports and other publications from the Forest Products Laboratory, U. S. Department of Agriculture, were important sources of fundamental information.

TABLE OF CONTENTS

PROPERTIES OF STRUCTURAL LUMBER
- Physical Properties ... 1
- Mechanical Properties .. 8
- Design Values for Structural Lumber 11
- Adjustment of Design Values for Duration of Loading 13
- Glossary of Lumber Terms ... 16
- Abbreviations of Lumber Terms 19
- Table of Board Measure .. 21
- Standard Sizes of Yard Lumber and Timbers 23
- Properties of Standard Dressed Lumber Sizes 24

WOOD BEAMS
- General Design Information ... 28
- Design for Bending Movement .. 30
- Design for Bending and Axial Loading Combines 34
- Design for Deflection .. 35
- Design for Horizontal Shear .. 37
- Design for Bearing on Supports 40
- Formulas and Diagrams for Static Loads 41
- Wood Beams - Load Tables ... 58

WOOD COLUMNS
- General Design Information ... 201
- Solid Columns .. 203
- Spaced Columns, Connector Joined 205
- Combined Axial and Bending Loading 207
- Solution of Hankinson Formula 208
- Use of Tabular Column Data ... 210
- Unit Axial Stresses - Simple Solid Columns - \(\ell/d \) from 2 to 30 .. 211
- Unit Axial Stresses - Simple Solid Columns - \(\ell/d \) from 30 to 50 .. 217
- Unit Axial Stresses - Spaced Columns, Condition "a" - \(\ell/d \) from 2 to 46 .. 223
- Unit Axial Stresses - Spaced Columns, Condition "a" - \(\ell/d \) from 46 to 80 .. 229
- Unit Axial Stresses - Spaced Columns, Condition "b" - \(\ell/d \) from 2 to 46 .. 235
- Unit Axial Stresses - Spaced Columns, Condition "b" - \(\ell/d \) from 46 to 80 .. 241

PLANK AND LAMINATED FLOORS AND ROOFS
- General Design Information ... 247
- Table of Uniform Loads - Type III 253
- Table of Uniform Loads - Type IV 254

MAXIMUM SPANS FOR FLOOR JOISTS
- General Design Information ... 255
- Maximum Spans - 50 psf Live Load 256
- Maximum Spans - 60 psf Live Load 257
- Maximum Spans - 70 psf Live Load 258
- Maximum Spans - 80 psf Live Load 259
- Maximum Spans - 90 psf Live Load 260
- Maximum Spans - 100 psf Live Load 261

REFERENCES ... 262

DECIMAL EQUIVALENTS .. 264